After initials tests we have made at the lab, we presented our RoboShop project on the 16th of October, as well as during 3 days from 21st to 23rd october in two different events outside our university. The stand was small. Yet we managed to successfully run our demo of a helper robot that targets shopping malls (see video below). We will be presenting even more demos to the public on thursday 28th november as part of the European Robotics Week. We will report them here. Stay tuned.  

The french academic system requires that people pass yet another diploma higher than the PhD before applying for a full professor position. The diploma is called “Habilitation à Diriger les Recherches” (HDR for short) which stands for “Ability to Supervise Research”. It requires writing a thesis presenting how the candidate co-supervised PhD students and Post-Doc, and the strategy  of conducted research.

Since all 3 reviewers approved my thesis, I can proceed with the defense. So, I’m glad to announce that it will be held on 10:30, the 6th December 2013, at Ecole des Mines de Douai of course. My talk is entitled: “On Flexible Autonomous and Mobile Multi-Robot Systems”. You’ll find below a summary as well as names of jury members. The defense is public and you are welcome to attend.

Last, I would like to acknowledge that I have been supported for this work by several people, for many years. Unfortunately, I can name here only a few of them: Stéphane Ducasse, Luc Fabresse, Serge Stinckwich, Georg Heeg, Jannik Laval, Anaud Doniec, Anthony Fleury,  Cécile Labarre, Christine Delille, and Muriel Morgan.


Research I have been conducting and co-supervising so far address control software for robots that are both mobile and autonomous. Such  a robot is able to perform its missions and to move in a partially known changing environment, without any human assistance. I have been targeting solutions which assist software developers in different stages of the process of building flexible multi-robot systems. I have relied on a thought framework structured around four pillars: software components, aspect-oriented programming, dynamic languages and multi-agent systems. Part of my contributions address the microscopic scale of multi-robot systems, that is robots considered as individuals. We have thus proposed programming models, that merge aspect-oriented programming and components. Our goal is to favor modularity in order to introduce flexibility during software development and maintenance. Then, we have studied flexibility at run-time by introduce software architecture that support dynamic self-adaptation. As a result, such an architecture enables robots to evolve their behavior at run-time according to environmental changes and to the task at hand. We have complemented these contributions by introducing  development tools and execution infrastructures that take into account resource constraints. For instance, we have introduced a model of an application-driven object-oriented virtual memory. It allows adapting RAM usage by dynamically loading/unloading object graphs. We have also proposed a framework for remote debugging that is required for software-hardware integration tests. This proposal relies on a remote meta-level located on the developer machine, that controls a base-level located on a robot. Another facet of my research tackles the macroscopical level, that is multi-robot systems considered as a whole. Part of this work is a follow up to our use of components in robot control architectures. It consists in making robots coordinate their decisions for local dynamic adaptations by exchanging software components. These interactions as well as any high-level coordination require remote communications. However, network infrastructures are not always available. We have addressed this issue by proposing a light-weight distributed algorithm where robots organize themselves to set up an ad hoc mobile network. We have built on top of this solution a distributed multi-robot exploration strategy. It allows a robotic fleet to collaboratively build a map while maintaining a network connectivity and compensating for possible disconnections.


Promotor: Stéphane DUCASSE, Research Director at INRIA, Scientific Director of INRIA Lille, Head of the RMoD Team – Lille  (France)


  • Michel OCCELLO, Professor at Université Pierre Mendes France (Grenoble 2), Head of the COSY team (LCIS) – Grenoble  (France)
  • Rachid ALAMI, Research Director at CNRS, Head of the RIS team (LAAS) – Toulouse (France)
  • Theo D’HONDT, Professor at Vrije Universiteit Brussel, Software Languages Lab – Brussels (Belgium)


  • Davide BRUGALI, Professor at Università Degli Studi Di Bergamo, Head of the Software for Experimental Robotics Lab – Bergamo (Italy)
  • Jacques FERBER, Professor at Université de Montpellier 2, SMILE team (LIRMM) – Montpellier (France)


As part of the Robotics Week 2013 organized  by the non-profit euRobotics, we will be presenting demos featuring some robots we are using for our research. Our goal is to increase awareness of the general public to current status of robotics and what robots can actually do. We will present different kinds of robots and demo their capabilities through some application scenarios.

Demos will be held in the Département Informatique et Automatique at the Ecole des Mines de Douai (Northern France). If you wish to attend, please drop us an email: car @ minesdouai . fr. We scheduled demos the 28th of november 2013 at the following hours:
* morning from 10:00am to 12:00am
* afternoon from 2:30pm to 4:30pm

You can find more info on this event on the dedicated page.

In a recent experiment we demoed a scenario of how a robot can be used to help shoppers (see Video below). The robot computes the optimal path for picking items of an arbitrary shopping list. It carries the bag and guides the shopper to items locations.  As we explain in the slideshow (below the video), there are other possible applications of mobile robots in a shopping. We also give a quick overview of hardware and software. We reused some existing ROS packages that we combined with our own software built using the PhaROS client based on Pharo a Smalltalk inspired OO dynamic language.

Video: A Robot Made to Help Shoppers

Slideshow about the RoboShop project

Being a TDD fan, I’m writing tests all the time. And I sometimes ended up having groups of nearly identical tests:

  • they use exactly the same objects, send the same messages,
  • but they differ only by values.

In a discussion on the Pharo-dev mailing list, Laurent Laffont pointed what is done in PhpUnit and suggested to have something similar in Pharo. After a few hours hacking I’ve my parametrized tests working and integrated with the test runner to ease debugging.

I’ve introduced a ParameterizedTestCase which supports both “plain” tests as well as parametrized tests. This class should be subclassed as in the following example:

ParameterizedTestCase subclass: #ExampleOfParameterizedTestCase
        instanceVariableNames: ”
        classVariableNames: ”
        poolDictionaries: ”
        category: ‘ParameterizedTests’

A test method is any method that is marked with the pragma testParametersSelector: as in the following example:

ExampleOfParameterizedTestCase>>#should: value1 plus: value2 equals: expectedSum
        <testParametersSelector: #givenValuesAndTheirExpectSum>
        self assert: value1 + value2 equals: expectedSum

The argument of the pragma testParametersSelector: is the selector of a method that provides a collection of arrays. Each array gathers parameters for a different test case. In our example the method givenValuesAndTheirExpectSum is defined as following:

        ^{{1. 2. 3}.
        {10. 20. 30}.
        {100. 200. 300}}

Since we have three arrays of parameters, we will have 3 different test cases all three with the same test selector, but each with a different parameters array. This is displayed by the test runner as shown in picture 1.


Picture 1: Passing Parametrized Test

If any of the parameters arrays leads to a test failure, the Test Runner will display the failing test selector as well as the parameters that lead to the defect. For demo purpose, let’s introduce some invalid parameters and change the previous givenValuesAndTheirExpectSum method as following:

        ^{{1. 2. 3}.
        {10. 2. 30}.
        {100. 200. 0}}

I have changed the second and the third parameter arrays. The Test Runner detects indeed 2 failing tests out of 3 runs as shown in picture 2. As you can see the parameters that lead to the defect are displayed so, one can identify the origin of the defect.


Picture 2: Failing Parametrized Test

I have developed and tested parametrized tests under Pharo 2.0. If you want to try it, you can install it by evaluating the following expression in a workspace.

Gofer it
        url: ‘’;
        package: ‘ParameterizedTests’;

It is worth noting that although in the examples I have given above data is hard coded, nothing prevent from adopting an approach as suggested by Frank Shearar in his Squeak Check project. Method that return the array of parameters can rely on any arbitrary complex data generator class, that may produce different data randomly each time tests are run.

At the ESUG 2013 conference, we presented the current status of the RoboShop project. Santiago did a great job and now we are able to run tests of our scenario of a helper robot  in a shopping mall. Based on a map built using laser SLAM, the robot computes the shortest path to fetch items listed by a customer in a shopping list. The slides below include a video of the first tests. They also give a bird’s eye view of the architecture, where we use Pharo for orchestration. We also reuse existing software from the ROS community through our client PhaROS.

Last may, Dr. Luc Fabresse presented at the ICRA 2013 workshop on Software Development and Integration in Robotics (SDIRIII) our first results in the CAIRE project. It’s about a first version of BoTest, a first version of a UnitTest framework based on the work done in eXtreme Programming, that we adapted to the context of robotics. We give a glimpse of experiments we are doing with our robots. The slides of the presentation are available below.


The 11th IEEE International Symposium on Safety, Security, and Rescue Robotics continues its tradition of attracting cutting-edge papers in the theory and practice of robots for all types of safety, security, and rescue applications such as disaster response, mitigation and recovery; rapid and secure inspection of critical infrastructure; detection of chemical, biological and radiological risks, and operations in these dangerous sites.

SSRR 2013 also serves as an entry point for researchers and technologists who want to learn more about safety, security and rescue robotics, through tutorials and keynotes.

A Rescue Robotics Camp, attached to the conference, gives participants the opportunity to learn about the state of the art algorithms for Search and Rescue Robots and their use. The camp is organized in collaboration with the NIFTi EU project and RoboCup.

Papers and participation fall into:

  • Regular papers (4-6 pages) describing original work in SSR or work that can be applied to SSR domains.
  • Center/project papers (2-4 pages) describing work at centers or active multi-institutional projects.
  • Vision papers (2-4) presenting long-term challenges or new ideas outside of the mainstream in computing for SSR robotics.
  • Late Breaking Reports (1-2 pages) contributing novel directions or work which has not been fully analyzed or explored. Late Breaking Reports are reviewed and the relevance of the material to the SSR domains must be clear.

Topics include but are not limited to:

  • Biologically inspired solutions
  • Casualty assessment, care and extraction
  • Chemical, biological, or radiological events
  • Computer vision
  • GPS-denied navigation and mapping
  • Humanoid robots
  • Humanitarian demining
  • Human-robot interaction
  • Inspection of critical infrastructure
  • Manipulation
  • Multi-agent coordination
  • Nuclear decommissioning
  • Sensing and sensor fusion
  • SLAM in extreme environments
  • Structural assessment
  • Telemedicine
  • Unmanned ground, aerial, and marine vehicles
  • Urban search and rescue
  • Wildland fire fighting

In addition, SSRR 2013 encourages the submission of “non-traditional” papers which contribute to understanding robot systems for Public Safety and have an explicit link to Public Safety but may not have results in a high fidelity SSRR domain.

SSRR 2013 will have three paper awards:

  • Best Paper Award
  • Best Student Paper Award
  • Outrageous Visions Award

Important Dates

  • Jun 14, 2013 Submission of proposals for tutorials and special sessions
  • Jul 19, 2013 Submission of regular papers, center/project papers, and vision papers
  • Aug 26, 2013 Notification of acceptance
  • Sep 6, 2013 Submission of Late Breaking Reports
  • Sep 16, 2013 Notification of acceptance of Late Breaking Reports
  • Sep 27, 2013 Submission of final papers

In the RoboShop project, we aim at developing a platform for robotic applications in a shopping mall. We took the decision to use ROS, the robotic middleware backed by the Open Source Robotic Foundation. We also wanted to continue using our favorite language Pharo. This is how we end up developing PhaROS, a client for Pharo-based ROS nodes.

Today, we are glad to announce that the first version of PhaROS is now officially available, that is there is :

There is still much to do in PhaROS, and more broadly in the RoboShop project. But, so far we already have a PhaROS node that wraps the robot that we are using. We connected it to the gmapping SLAM algorithm and we have used it to buid a map of our lab. More to come soon.

The CAR team  ( carries research at the frontier of Software Engineering and Robotics. We study software architectures, languages and tools for controlling individual robots. We have developed an expertise in reflective and dynamic languages, as well as component models, for a modular robotic software architectures. Besides, our research also addresses coordination and cooperation in robotic fleets. We mainly focus on communication models as well as emerging or predefined organizations for multi-agent robotic systems.

The post-doc position is part of the CAIRE project. The goal of the project is  to propose innovative solutions for the agile development of robotic software. The study will be validated by developing new robotic-based exploration and mapping solutions.

The candidate must have a PhD in Computer Science or Robotics, should demonstrate strong programming skills, and have research interests in at least one of the following areas:
- modularity and software composition
- programming languages design
- agile software development
- robotic middleware
- control architectures for robots
- multi-agent robotic systems

Important information:
-Workplace : Douai (Lille area), France
-Start: Between May and October 2013
-Duration : 18 months
-Salary approx. 2000 Euros.

To apply, please send your CV + references to : noury (DOT) bouraqadi (AT)